## Writing Trig Equations to Model Real-life Applications

Model the average high temperature data for Columbus with a sine or cosine function. Overlay
the function on the data with your calculator to ensure that the function fits the data well.

| j  | F, * | М  | Α'  | M  | j  | j  | Α  | S  | O  | N  | D  |
|----|------|----|-----|----|----|----|----|----|----|----|----|
| 36 | 39   | 50 | 62. | 73 | 82 | 85 | 84 | 77 | 65 | 51 | 40 |



$$V-J_1 = \frac{36+85}{L} = 60.5$$
 $A = 85-60.5 = 24.5$ 

$$y = -24.5 \cos \frac{\pi}{6} (x-1) +60.5$$
  
 $y = -24.5 \cos \frac{\pi}{6} (x-1) +60.5$ 

2. A Ferris wheel that is 60 feet in diameter makes one revolution every 50 seconds. If the center of the wheel is 36 feet above the ground, write a trig equation to model time versus height above the ground.



$$V_{0} = \frac{6466}{2} = 36$$

$$A = 66 - 36 = 30$$

$$P. \lambda = 0 \quad (cosin)$$

$$P = 50$$



$$y = -30 \cos \frac{2\pi}{50} \times +36$$
  
 $y = -30 \cos \frac{\pi}{50} \times +36$ 

One day in Galveston, Texas, high tide occurred at 9:36 A.M. At that time, the water at the end of the 61<sup>st</sup> Street Pier was 2.7 meters deep. Low tide occurred at 3:48 P.M., at which the water was only 2.1 meters deep. Assume that the depth of the water is a sinusoidal function of time with a period of half a lunar day or roughly 12 hours 24 minutes.



$$A = 2.7 - 2.4 = 4.4$$

$$A = 2.7 - 2.4 = 0.3$$

$$P.S. = 9 + \frac{34}{40} = 9.6$$

$$P = 12 + \frac{24}{60} = 12.4$$

$$y = 40.3 \cos \frac{207}{12.4} (x - 9.4) + 2.4$$
  
 $y = 40.3 \cos \frac{207}{6.2} (x - 9.6) + 2.4$ 

## **EXAMPLE 6** Calculating Harmonic Motion

A mass oscillating up and down on the bottom of a spring (assuming perfect elasticity and no friction or air resistance) can be modeled as harmonic motion. If the weight is displaced a maximum of 5 cm, find the modeling equation if it takes 2 seconds to complete one cycle, (See Figure 4.97.)





$$y = -5 \sin \frac{20}{2} \times$$

$$y = -5 \sin \frac{20}{2} \times$$